

Von der Erde ins All. Und zurück.

Intelligente Lösungen für Industrie und Wissenschaft.

Exam Earth to Onese	Earth
From Earth to Space.	Space
And back.	&
	Future
Intelligent solutions for	
industry and science.	

Kayser-Threde GmbH

SCIENCE & EARTH OBSERVATION

Space Qualification of a Fiber Optic Sensor System for X-38 Vehicle

Arnd Reutlinger

Project Manager Fiber Optic Systems

Oktober 5th, 2005

www.kayser-threde.de

- Introduction into Fiber Optic Sensing
- System Architecture
- Application on X-38
- Critical Technology Developments
- Other Applications and FOS Systems
- Summary

Introduction into Fiber Optic Sensing

- Simultaneous measurement of various parameters:
 - Temperature from -260 ℃ to 800 ℃
 - Strain up to 50.000 μ m/m and load cylces > 10⁸
 - Concentration in gases and fluids (i.e. hydrogen)
- Insensitive to extreme environments (EMI, loads, chemical compatibility)
- Small dimensions and low system weight, i.e. signal processing unit, 100 measurands and harness < 5kg</p>
- Feasibility of structural conform embedding into composites
- Signal processing unit and sensor fiber qualified for deployment in extreme environments

Functional Principle

Bragg Grating

- Filtering of a small portion of light out of a broadband spectrum
- Inscription of Bragg gratings into the fiber core via a UV Laser

- Intrinsic distributed measurement points in an optical fiber
- Up to 20 Bragg gratings distributed along one single fiber
- Identification of single measurement points via WDM (wavelength division multiplexing)

System Architecture

tower FBG's

■ Max. elongation: 1% (Standard), up to with draw

Time Division Multiplexing

Signal Processing Unit (SPU)

Fiber Optic Signal Processing Under Severe Environmental Conditions

800 nm Wavelenght Range instead of 1500 nm

- Usage of inexpensive silicon based photodetectors
- Relaxed detector cooling
- Feasibility of small, robust and inexpensive spectrometers (industrial standard)
- Availability of double measurement range (800 nm range DI / De = 7 pm / 10 μm/m, in the 1500 nm range DI/De = 15 pm / 10 μm/m)
- Good resolution for strain and temperature monitoring (resolution < 3pm or <5 μm/m respectively)</p>
- High MTBF (45.000 h for X-38)

Spectrometer Design

- Synchronous data sampling (photo shot) of all FBG's (→ Very important for dynamic load monitoring)
- High speed detectors available
- Secure availability of all components in MIL standard (i.e. light source from fiberoptic gyros)

Application on X-38

Application on X-38

Objective

 Demonstration of Health Monitoring Technologies on-board of the NASA re-entry vehicle X-38

Project TETRA (Technologies for Future Space Transportation):

- Cooperation between DLR and NASA on RLV technologies
- Period: 1996 -2002
- Funded by BMBF, Bavarian State and own funds

Fiber optic sensor application

- Strain and temperature measurements
- Sensing of strain and temperature measurements during ascent and decent

Application on X-38

Load Measurements on the aft structure of the X-38

Strain range: Temperature range Sample rate -1000 μm/m – 4000 μm/m -40 ℃ - 180 ℃ 1 Hz (static values)

X-38 Requirements for the SPU

Environmental vibration

- 20Hz 0.01g²/Hz
- 40Hz 0.160g²/Hz
- 350Hz 0.160g²/Hz
- 2000Hz 0.0005g²/Hz
- Overall 9.87grms

Thermal-vacuum

- -15 °C to 50 °C
- pressure from 0 bar to 1 bar

Supply Power Voltage: 28 VDC ±6 VDC (Continuous and inrush resistant power supply) EMC/EMI: SPP 30237 Data: RS 422

Critical Technology Developments

Signal Processing

Sensor Fiber

Verification

Critical Technology Developments – Signal Processing Unit

X-38 requirements

- Operation during severe environmental conditions
- Compact and rugged design for space application
- Low power consumption
- Qualified components

Compensation of environmental impact on sensing

- Vaccum
- Temperature range
- Vibration

Environmental Impact on Sensing

Vaccum

Effect

Drift with pressure changes

Reason

 Caused by the refractive index changes between normal pressure and vacuum.

Technical Solution

Reference grating

Environmental Impact on Sensing

Temperature

Effect

Thermal drift of spectrometer

Reason

- Extension of optical path
- Thermal drift of spectrometer grating
 Technical solution
 - Optical bench with minimal CTE (e.g. Invar
 - Reference grating

30.0

Environmental Impact on Sensing

Vibration

w/o reference grating

Effect

High noise due to disturbances on optical path

Reasons

- Vibration of optical bench
- Vibration of connectors
- **Technical solution**
 - Reference grating

KAYSER-THREDE

SPU Verification

Vibration test

Thermal vacuum tests

Critical Technology Developments - Sensor Fiber

X-38 requirements

- Gluing on aluminium
- Severe environment

General sensor fiber requirements

- Suitable coating for application
- Characteristica of sensor fiber
 - Quality problems with recoated sensor fibers
 - No standards for characteristic values (e.g. p_{eff}, mechanical and thermal hysteresis, etc.)

Critical Technology Development - Gluing

Problem

- Many criterias to be considered: coating, sample material, surface characteristica, environmental conditions
- Low mechanical transfer behaviour of coatings
- Low reproducibility

Solution

- Excecution of a glue trade off
- Design of different sensor configurations, e.g. sensor pads
- Development of an application procedure inclusive tools
- Qualification tests with each FBG before gluing
- Calibration required for each sensor after gluing

Critical Technology Development - Gluing

Fiber glued with sensor pad

Sensor fiber glued directly

Critical Technology Development - Gluing

Bad connection

Good connection

Acrylate (standard)

Low mechanical and thermal stability

Polyimide

- Thermal stability –270...+280 °C
- Improved mechanical strenght

ORMOCER® (Organic Modified Ceramics)

- High mechanical stability
- Thermal stability –60...+250 °C

Weibull diagram: mechanical breaking probability of Polyimide coated fibres with and without ORMOCER re-coating (thickness 20µm)

Other Applications and FOS Systems

KAYSER-THREDE

Y

Α

S

E

R

K

- Aviation (health monitoring)
- Airships (flight control)
- Wind turbine (process control
- Automotive (load monitoring)

н

R

E

Т

D

E

Space Application

Multipurpose Fiber Optic Sensor for RLV

- ESTEC TRP contract
- Monitoring of strain, temperature and hydrogen concentration in cryogenic hydrogen tanks
- Sensor embedded in composite

With H_2 : Pd elongation \rightarrow bending

- → Fibre core elongation
- → Bragg wavelength shift

Space Application

Structural Deformation Control of high precision optical bench (ESTEC contract)

Cassegrain tripod

Signal Processing Units For Different Applications

Space

Laboratory / industry

High-end test system, e.g. for Automotive

- Robust and compact signal processing unit suitable for almost all environments
- High mechanical strength and lifetime of sensor fibers
- Compensation of environmental impact on signal
- High Reliability and availability due to design and selection of components (high MTBF, remote monitoring, Built-In-Test)
- Easy to adapt to application requirements (interfaces, data format, signal processing

