

LASER DIODE INITIATED SYSTEMS FOR SPACE APPLICATIONS

Denis DILHAN Propulsion & Pyrotechnics Office CNES Toulouse (French Space Agency) denis.dilhan@cnes.fr

CNES RESEARCH STEPS IN OPTO-PYROTECHNICS

•R&T ACTIVITIES SINCE 1995 WITH ISL (French German Research In Conference States)

Initiation of explosive materials : pyrotechnic compositions; double base powders ; secondary explosive with laser diodes and Nd-YAG laser :

Determination of key parameters of initiation / design of a miniaturised Nd/Yag laser source : 1995/1998

- Design of an Opto Pyro Initiator : 1998/2000
- Design of an all secondary explosive Opto Pyro Detonator based on DDT (Deflagration to Detonation Transition) : 1998/1999
- Design of an all secondary explosive Opto Pyro Detonator based on SDT (Shock to Detonation Transition) 2000/2001

Satellites system analyses for optopyrotechnics applications with ALCATEL SPACE
 Space and EADS ASTRIUM - 1999/2000

Development and Pre-Qualification tests of OptoPyro Initiator & Detonator -2001/2005

In flight validation of an optopyrotechnic system on DEMETER µSat (2000/2004)

OPTO PYROTECHNIC DEVICES : INITIATOR & DETONATOR

Opto-Pyro Initiator (IOP) equivalent to NSI (NASA Standard Initiator) All secondary explosive Opto-Pyro Detonator Initiator (DOP) equivalent to ARIANE detonating transmission line tip

EXPERIMENT "PYROLASER" ON DEMETER IN FLIGHT VALIDATION OF AN OPTO- PYRO SYSTEM

EXPERIMENT LAY OUT

MULTIMODE FIBER OPTICAL CABLE 62.5 /125 NEXANS : Reference 132126

Main data

Operating temperature :	long term :	-55 to +125°C	
	peak :	-65 to +150°C	
Maximum pulling force :	long term :	10 daN	
	short term :	25 daN	
Tensile strength :		> 100 daN	
Nominal weight :		4 Kg/Km	
Minimum bending radius :	long term :	20 mm	
	short term (ir	stallation) : 12 m	m
Maximum attenuation at 20°C	at 850 nm	4	dB/Km
	at 1310 nm	2 dP/km	
	at 1510 mm	2 0B/Km	
Effective index of refraction	at 850 nm :	1.4970	
Effective index of refraction	at 850 nm : at 1300nm	1.4970 1.4919	
Effective index of refraction Numerical aperture :	at 850 nm : at 1300nm	1.4970 1.4919 0.275 ± 0.015	

at 1310 nm > 1000

- ① OPTIC FIBER Core + cladding + coating Silice/Silice/Acrylate Type 62.5/125/400 µm
- PRIMARY JACKET
 Copolymer O HAL High
 Temperature
 Ø 0.90 ± 0.05 mm
- ③ MECANICAL STRENGTH Polymer aromatic fiber braid
- OUTER JACKET Copolymer O HAL High Temperature Ø nom.
 1.5 mm E.T.F.E.
 Ø 1.8 ± 0.05 mm

– Outgassing Tests : CVCM<1%</p>

– Mechanical strength >20 N without optical degradation

OPTICAL CONNECTION : JOHANSON NASA/GSFC qualified

FC: High Reliability Adapter P/N 2525-4

- Durability: >500 cycles
- Storage Temp: -55° to 150° C
- Operating Temp. -45° C to 110° C
- Vibration: 20g's rms, 20-2000Hz, IL 0.1 dB max. change, RL 0.5 dB max. change

FC/PC : High Reliability, Sprung Connector P/N 2547-3

- Insertion Loss: 0.15dB typ. for single-mode
- Return Loss: < -45dB typ. for PC polish
- Tensile Loading: >20lb
- Durability: > 500 cycles
- Boot Out-Gassing: Avg. value TML < 1%, avg. value CVCM < 0.1%, per ASTM E-595-90
- Vibration: 20g's rms, 20-2000Hz, IL 0.1 dB max.change, RL 0.5 dB max. change *
- Storage temp: -55° to 150° C
- Operating temp: -45° to 110° C

LASER DIODES JDS 2364L2 CHARACTERISTICS

Laser diode response : Power = F(current)

LASER DRIVE UNIT Current impulse : 2A / 20 ms

RADIATIONS TESTS

Test Sequence	Energy (MeV)	Fluence (p/cm ²)	Equivalent Dose (krad)
Chain 1+2+3	50	10 ^E 10	1
Chain 2+3	50	5.10 ^E 10	5
Chain 3	50	10 ^E 11	10

Equipment	Reference (mJ)	Test 1 (mJ)	Test 2 (mJ)	Test 3 (mJ)
Diode SN636	35.27	34.78		
Diode SN637	32.13		31.98	
Diode SN638	31.55			30.81
Cable 1	30.22	30.54		
Cable 2	29.87	26.80	27.89	
Cable 3	28.25	27.09	27.67	27.58

19 mm (0 - pic)

15 q

MECHANICAL TESTS

Sine Vibrations

5 Hz à 14 Hz 14 Hz à 100 Hz Speed 4 octaves / mn. 1 sweep /axis 3 axis

Random Vibrations

20 Hz à 100 Hz 100 Hz à 400 Hz 400 Hz à 2000 Hz Duration : 1 minute / axe 3 axis equivalent level : 25grms

Shocks through EGCU qualification (Electronique de gestion de la Charge Utile) 100 Hz 20 g 1 000 Hz 1000 q 1 000 Hz à 10 000 Hz Palier à 1000 g

+3 dB / octave 0,7 g2 / Hz -4 dB / octave

TESTS RESULTS AFTER MECHANICAL ENVIRONMENTS

Characterisation of the optical energy output after each step for the opto chain :

Optical Energy Output Optical Chain 636

- 1 : reference
- 2 : axis 1 sine & random 50%
- 3 : axis 1 random 100%
- 4 : axis 2 sine & random 50%
- 5 : axis 2 random 100%
- 6 : axis 3 random 50%
- 7 : axis 3 random 100%
- 8 : axis 3 sine

MAIN RESULTS

CONNECTOR END FACES DAMAGING

Optical losses : 0.3 dB (7%) for random vibrations with 25 grms level

INITIATOR OPTICAL INTERFACE DAMAGING

THERMAL VACUUM CYCLING

• TE : 6 hours - TP : 4 hours

- Time
- TFire Min : -25° C TFire Max : $+55^{\circ}$ C
- TNoFire Min :- 40 °C TNoFire Max : +60 °C

Vacuum : 1E-5 et 3E-6 mbar

■ THERMAL VACUUM CYCLING : LASER DIODE POWER OUTPUT DECREASE

Power output decrease : 0.3 dB at +55°C

Assembly - Integration – Verification of the optical chain

Cleanliness optical I/F

Optical Transmission S&A /IOP

Power & Optical transmission : Diode / S&A

July 9,2004 "The First ESA-NASA Working Meeting on Optoelectronics: - Fiber Optic System Technologies in Space" ESA/ESTEC – October 6, 2005

cnes

CONCLUSIONS

THANKS TO OPTROELECTRONICS :

▼Satellite Pyro Harness: mass saving >50% with conservative design:

=> significant mass saving when lines are numerous and long (3.5 kg typical and even 5kg, depending on the architecture optimisations)

=> Mission Extension \approx 10 days / Kg for a TELECOM S/C

=> Eventually launch costs decrease (15 k€/ kilogram)

Lower electrical budget : 2 A instead of 5 A / smaller batteries _ converters & relays

▼Opto-pyro system is valuable for TELECOM S/C or PROBES (Mars Missions, etc)

▼AIV constraints mainly on cleanliness of optical interfaces and ESD sensivity of laser diodes exist but are easy to manage (earth telecom and aeronautic experiences),

VFollow on activities are planned for future launchers developments

18