Problem Statement for Launch Vehicles
October 5 & 6th, 2005
Pyrotechnical Subsystem on Ariane 5 (1/3)
Current status

- The current A5 ECA configuration includes:
 - 369 pyrotechnical devices (including 515 meters of pyro-transmission line) – this number would noticeably decrease thanks to opto-pyro technology
 - 79 final functions to be activated which shall remain unchanged

- The safeguard rules require two independant subsystems:
 - One dedicated to neutralisation
 - One for functional and operational needs

⚠️ Compliance with current safeguard requirements is still to be achieved through dedicated studies, which could direct the architecture selection
Pyrotechnical Subsystem on Ariane 5 (2/3)
Current status (cont’d)

- 515 meters of pyro transmission cords over 189 lines
- 34 detonators
- 30 RMV
- 36 IFOC

BSA: Boîtier de Sécurité et d’Armement (Safe & Arm Box)
RMV: Relais MultiVoies (MultiPath Relays)
IFOC: Inflammateur à Fonctionnement par Onde de Choc (Detonation to Deflagration Initiator)
Main objectives associated with Optopyrotechnics

- Recurring Cost reduction (at both system and pyro-subsystem levels)
 - Only a technological breakthrough can bring about new cost savings (removal of pyrocords, multipath relays,…)

- RAMS:
 - Removal of primary explosives from the system
 - should lead to decrease the dangerousness at system level (after demonstration of security requirements)
 - should simplify the last operations (additional cost saving)
 - Immunity to Electro-Magnetic Interference (EMI) and Electrical Static Discharge (ESD)
 - increase the safety

- Mass reduction
The optopyrotechnics project consists in replacing the current electro-pyrotechnical chains by electro-opto-pyrotechnical chains.

Electro-pyrotechnical *elementary* chain

- Electrical Detonator (AD)
- BSA (Barrier Interception Switch)
- LT (Safety Transmission Line)
- RMV (Relais Multi-Voies)

Optical Chain

- Laser diode (DL)
- Switch
- Optical Fiber
- FT (Final function)

Pyrotechnical Transmission Line

- Detonator – DOP
- Initiator - IOP

Opto-pyrotechnical *elementary* chain

- Electrical Interception Barrier
- Opto-interception Barrier

Or
Optopyrotechnical Subsystem (2/3)

Major concerns

- The major concern of the opto-pyro technology is Optical Power Transmission through FiberOptic
 - which is somewhat different from the well-known Optical Data Transmission

 • Optical Data Transmission has been mastered for years in aeronautics:
 - Basic rules such as routing, …remain valid for Power application
 - Space environment may be more severe (in particular launch vehicles)
 • Optical Power Transmission raises new problems still to be solved

- More over, compliance of components, specially optical ones, with harsh environment is not assessed
Moving from electro-pyrotechnics to opto-pyrotechnics has several impacts:

- « visible » at Stages level:
 - Layout
 - Pyrotechnics sub-system simplification,…

- less « visible », at System level:
 - Transient phases studies for control of Stages separation (and ignition): simultaneity of commands
 - Fulfilling Safeguard requirements
 - Impacts on On-Board Flight S/W which manages Ordnance commands

Switching toward optopyrotechnic is not only a technological step, but also impacts system aspects:

- overall design, manufacturing, testability and AIT (Assembly Integration Test) process from the early beginning