Space Qualification of Laser Diodes

Stéphanie Minec-Dubé
(stephanie.minec-dube@sodern.fr)

www.sodern.com

ESA-NASA Working Group in Optoelectronics
21-22 June 2006
SUMMARY

• EADS-SODERN Activities
• Laser Diodes Applications: ATV-VIDEOMETER and PHARAO
• Laser diodes validation approach
• Evaluation Flowchart
• Control and E/O characterizations performed
• Failures observed:
 ✓ Indium soldering defect
 ✓ Package Induced Failure
• Conclusion
SUMMARY

- **EADS-SODERN Activities**
- Laser Diodes Applications: ATV-VIDEOMETER and PHARAO
- Laser diodes validation approach
- Evaluation Flowchart
- Control and E/O characterizations performed
- Failures observed:
 - Indium soldering defect
 - Package Induced Failure
- Conclusion
• Created in 1962
• Shareholders:
 ➢ EADS Space Transportation 90%
 ➢ AREVA (French Atomic Energy Agency) 10%
• 380 employees (out of which 270 hold engineering and technical degrees)
• Turnover (FY 2005) €50 Millions
• Certified ISO 9001 (2000 version) in 2002
• Business Distribution:
 ➢ Space & Optics: 70%
 ➢ Neutron: 30%
EADS-SODERN Space Activities

- **Attitude Control**
 - Star Trackers
 - Earth Sensors
 - Optical Rendez-vous Sensors

- **Earth Observation**
 - Cameras & Global Monitoring Equipment
 - Detection Units
 - Infrared Imagers

- **Scientific Instrumentation**
 - Micro-Gravity experiments
 - Deep Space exploration
 - Mars exploration

- **Defence Optronics**
SUMMARY

EADS-SODERN Activities

Laser Diodes Applications: ATV-VIDEOMETER and PHARAO

Laser diodes validation approach

Evaluation Flowchart

Control and E/O characterizations performed

Failures observed:

✓ Indium soldering defect

✓ Package Induced Failure

Conclusion
Laser Diodes Application: Videometer for ATV (European Automatic Transfer Vehicle)

- Optical “Rendez-Vous” sensor for the docking of the ATV to the ISS
- The laser diodes beams illuminate the Rendez-Vous Target (RVT) mounted on the ISS and composed of laser retro-reflectors. Reflected light towards the VDM is detected and analyzed
- 6 laser diodes per model

Characteristics

- Laser diode on submount
- Fabry-Perot laser diode
- AsGa/AlGaAs
- 810nm
- multimode
- 2W optical power
- Modulated emission (10% DC maximum)
- Au-Sn soldering

- Progress of the project
 - Laser diodes successfully qualified
 - Videometer Qualification model delivered
 - First Flight Models delivered
Laser Diodes Application: PHARAO atomic clock

- Scientific program under CNES contract
- Development of the laser diodes in charge of EADS-SODERN with the support of the CNES specialists (O. Gilard and G. Quadri)

- A cesium clock to fly aboard the ISS
- The Laser Source provides laser beams to perform
 - Optical capture
 - Selection of Cesium atoms
 - detection
- Laser diodes are used in Extended Cavity Laser Diode
- 8 laser diodes per model
- Characteristics
 - Fabry-Perot laser diode
 - AsGa/AlGaAs
 - 852nm
 - singlemode
 - 150mW optical power
 - Continuous emission
 - EM packaging: submount
 - FM packaging: hermetic package
- Progress of the project
 - Engineering model delivered in March 2006
 - Up-screening and qualification of the Flight models laser diodes in progress
SUMMARY

- EADS-SODERN Activities
- Laser Diodes Applications: ATV-VIDEOMETER and PHARAO
- Laser diodes validation approach
- Evaluation Flowchart
- Control and E/O characterizations performed
- Failures observed:
 ✓ Indium soldering defect
 ✓ Package Induced Failure
- Conclusion
Context at the beginning of the projects

- For PHARAO and Videometer, as for other programs, EADS-SODERN has designed and made space equipments using COTS active/passive key components.

- Use of commercial component may be a cost effective solution.

- But, following aspects must be treated appropriately:
 - Selection of the technology and the manufacturer
 - Evaluation of the space environment integrity
 - Screening and LAT to be performed on Flight Models
 - Implementation of Laser diodes (temperature, packaging, ...) in the equipment.

- Laser diodes market:
 - Small quantities (modest budget compared to telecom market)
 - No qualified components (space or Telcordia)
Description of the proposed approach

- Re-using expertise and know-how in component development plan

 ⇒ Validation in different steps:

 1. Selection of appropriate manufacturers according to data-sheets (parameters, flexibility)
 2. Procurement of commercial devices from the different selected manufacturers
 (2 for ATV-Videometer)
 3. Pre-Evaluation (Environments and E/O tests) ⇒ select a manufacturer
 4. Evaluation of the selected manufacturer
 ⇒ validation of the manufacturer and the possible use of this device for space application
 ⇒ Taking into consideration for the system the results of E/O performances in operating conditions
 ⇒ Define the screening and LAT to be performed
 5. Procurement of Flight Models Laser diodes (same production lot)
 6. Up-screening
 7. Lot Acceptance Tests (similar to Evaluations Tests)
SUMMARY

- EADS-SODERN Activities
- Laser Diodes Applications: ATV-VIDEOMETER and PHARAO
- Laser diodes validation approach
- Evaluation Flowchart
- Control and E/O characterizations performed
- Failures observed:
 - Indium soldering defect
 - Package Induced Failure
- Conclusion
Evaluation Flowchart

Construction Analysis
- Visual inspection
- Materials Analysis
- Pull-test on the bondings
- Die-shear of the laser chip
- Micro-section of the die

1 device

+ 2 witness devices

Manufacturer Assessment

Environmental Tests
- Moisture Tests
 - 3 devices

- Thermal Tests
 - 3 devices

- Mechanical Tests
 - Sine and random vibrations and mechanical shocks
 - 3 devices

Endurance Tests
- Life-Tests
 - Stressed on t° and current
 - 1500h minimum
 - 4 devices

- Life-Tests under vacuum
 - Stressed on t° and current
 - 1500h minimum
 - 3 devices

Control (visual and E/O)
SUMMARY

• EADS-SODERN Activities
• Laser Diodes Applications: ATV-VIDEOMETER and PHARAO
• Laser diodes validation approach
• Evaluation Flowchart
• Control and E/O characterizations performed
• Failures observed:
 ✓ Indium soldering defect
 ✓ Package Induced Failure
• Conclusion
Control during tests

- Visual inspection of the die in particular the critical area which surround the emission area
 - Discoloration
 - Contamination
 - Mirror coating defect
 - Striation

E/O characterizations to check any drift
E/O Characterizations performed (I)

- Development of specific test benches for E/O characterizations
 - Optical power
 - Voltage
 - Emission Spectrum
 - Farfield intensity pattern

- Development of specific test benches for environmental tests

- Adaptation of the E/O facilities according to the project needs
 - Temperature (wavelength shift)
 - Continuous or modulated current
 - Stability of the farfield
E/O Characterizations performed (II)

- Characterizations of the Optical power and Voltage
 - Versus current, temperature, modulations
 - Important drift of the threshold current versus t°

![Graph showing relative optical power versus current and relative voltage versus current](image)

![Graph showing optical power versus operating current for different temperatures](image)
E/O Characterizations performed (III)

- Characterizations of the emission spectrum
 - Versus current, temperature, modulations
 - Important drift of the wavelength versus these parameters
 - ∼0.3nm/°C measured, in accordance with the AsGa material

![Spectral distribution versus temperature](image)
E/O Characterizations performed (IV)

- Characterizations of the farfield pattern
 - For multimode laser diodes
 - Absolute intensity in the 2 axes: parallel and perpendicular to the junction
 - versus current and temperature
 - And characterizations of the temporal stability
 - For singlemode laser diodes
 - Cartography of the diodes
SUMMARY

• EADS-SODERN Activities
• Laser Diodes Applications: ATV-VIDEOMETER and PHARAO
• Laser diodes validation approach
• Evaluation Flowchart
• Control and E/O characterizations performed
• Failures observed:
 ✔ Indium soldering defect
 ✔ Package Induced Failure
• Conclusion
Failure observed: soldering defect

- Indium Soldering defect
 ✓ Overflow of the soldering because of creation of Au-In intermetallic
 ✓ Chipouts which could detach

⇒ Indium soldering to be avoid for space applications
SUMMARY

• EADS-SODERN Activities
• Laser Diodes Applications: ATV-VIDEOMETER and PHARAO
• Laser diodes validation approach
• Evaluation Flowchart
• Control and E/O characterizations performed
• Failures observed:
 ✓ Indium soldering defect
 ✓ Package Induced Failure
• Conclusion
Failure observed: PIF (1)

• Package Induced Failure (=PIF)

In presence of organic compounds closed to the laser and in lack of oxygen and when the diodes are in operating mode

⇒ carbon deposition in the emission area

⇒ Up to thermal runaway

⇒ Up to a rapid and very important loss of the optical power
Failure observed: PIF (2)

- PIF was assessed by EADS-SODERN on the two types of laser diodes
 - 852nm 150mW
 - 810nm 2W

- See even at ambient temperature

- Lifetime without failure dependant of the tests conditions: could be in less than 100h

- Dependant of different factors
 - **Optical power density**: current, temperature and modulation
 - **Packaging**: presence of organic compounds
 - Oxygen partial pressure
Failure observed: PIF – Conclusion (3)

- To prevent PIF, EADS-SODERN suggests to evaluate laser diodes in the conditions as close as possible to the flight model conditions
 - optical power density (current, temperature, modulation)
 - pressure
 - packaging
 - during more than 1000 hours

- In case of non compatibility of the diodes in the conditions of the program under vacuum, the solution is to use or develop a specific hermetic package
SUMMARY

- EADS-SODERN Activities
- Laser Diodes Applications: ATV-VIDEOMETER and PHARAO
- Laser diodes validation approach
- E/O characterizations performed
- Evaluation Flowchart
- Failures observed:
 - Indium soldering defect
 - Package Induced Failure
- Conclusion
Conclusion

- Overview of PHARAO and Videometer projects
 - VIDEOMETER: First Flight Models delivered
 - PHARAO Source Laser: Engineering Model delivered

- Capability of laser diodes proved for space applications
 - Indium soldering to be avoid
 - Concern of the vacuum sensitivity to be taken into consideration

- Large scale of possible missions
 - Lateral sensor for formation flights