

808nm – high power diode lasers for long term stable pump modules

G. Erbert, K. Häusler, W. Pittroff, G. Tränkle FBH

T. Schwander Tesat Spacecom

..translating ideas into innovation

outline

- FBH
- Design, technology and properties of single emitters
- Performance of CW laser bars
- QCW pump sources for BepiColombo
- First results for QCW pump sources with higher power and repetition rate (ATLID)
- Summary and outlook

PROPRIETARY INFORMATION FBH / © Tesat-Spacecom GmbH & Co.KG reserve all rights including industrial property rights and all rights of disposal such as copying and passing to third parties

Facts & Figures

- Shareholders
 - State of Berlin / Federal Republic of Germany
- Founded in
 - 1992
- Member / Partner of
 - Forschungsverbund Berlin e.V.
 - Leibniz Association
 - Technische Universität Berlin
 - Humboldt-Universität zu Berlin
- Staff
 - 160 (including 75 scientists & PhD students)
- Budget / Turnover
 - 14 M€ (including 5 M€ project revenues)

PROPRIETARY INFORMATION FBH / © Tesat-Spacecom GmbH & Co.KG reserve all rights including industrial property rights and all rights of disposal such as copying and passing to third parties

Mission of FBH

Applied research and development of microwave & optoelectronic devices, circuits and modules:

Innovations with Microwaves & Light

Market-driven & customer-oriented

- Close cooperation with partners in research and industry serving customers needs
- Part of value chain
- Demonstrators, pilot & small scale production
- Stringent quality management, DIN EN ISO 9001:2000

Research Topics

- Microwave components
- Power diode lasers
- UV emitters
- III/V-technologies

Programs

- Research and Development on microwave & optoelectronic devices, circuits, modules
- Transfer programs
 - Spin-offs and start-ups
 - SMEs
 - Global players
- Services

Ferdinand-Braun-Institut für Höchstfrequenztechnik

value chain

PROPRIETARY INFORMATION FBH / © Tesat-Spacecom GmbH & Co.KG reserve all rights including industrial property rights and all rights of disposal such as copying and passing to third parties

808nm diode lasers - basic technology of FBH

- design:
 - GaAsP QW,
 - AIGaAs LOC structure ($x \approx y+0.3$)
 - low vertical divergence

chip-technology

- MOVPE multi wafer reactor
- process line (full wafer 3")
- passivation after cleaving
- coating by dielectric layers using IBS

mounting

- AuSn soldering of chips
- use of expansion matched submounts
- Au wire bonding

$$AI_{x}Ga_{1-x}As$$

$$d = 2\mu m AI_{y}Ga_{1-y}As$$

$$AI_{x}Ga_{1-y}As$$

2nd ESA-NASA Working Meeting ESTEC 21-22- of June 2006

1.0

15°C

ن^ت plug efficiency

wall

0.0

Δ

200µm stripe $P_{max} = 27W$

85°C

3

T_=120K

T_=746K

2

current I /A

15 20 25 30 35 40 45 50 55

I /A

808nm diode lasers of FBH – basic data

808nm diode lasers of FBH – basic reliability

- Lifetime test at high facet load
 - Mounting on C-Mount (R_{th}≈10K/W)
- Excellent stability 40mW / µm stripe width
- failures at 50mW / µm stripe caused by internal defects
- QCW bar performance determined by mounting issues and homogeneity!
 - Stability of chip material against optical load
 - > 50 000h @ 2% duty cycle
 - small chips

CW – laser diode benches for space suited 808nm pumping modules

- Projects
 - LCTSX
 - ALADIN
 - GIFTS
 - LTP
 - QSL
- Chip design
 - minibar (chip size <5mm)
 - low fill factor
- Space qualified mounting process
 - expansion matched materials
 - AuSn solder
 - high precision, robust FAC fixing
 - external spectral stabilization

PROPRIETARY INFORMATION FBH / © Tesat-Spacecom GmbH & Co.KG reserve all rights including industrial property rights and all rights of disposal such as copying and passing to third parties

Reliability of space suited CW- laser diode benches4W, 10 000h, 60°C LCTSX4A, 10 000h, 25°C ALADIN

- Long term test \Rightarrow reliability > 0.99 4 years at P = 1W (\leq 10mW/µm)
- Tested mounting scheme
 - temperature cycling
 - mechanical issues

PROPRIETARY INFORMATION FBH / © Tesat-Spacecom GmbH & Co.KG reserve all rights including industrial property rights and all rights of disposal such as copying and passing to third parties

808nm – QCW pump sources for Bepi Colombo

Requirements

- 700 W usable power (fibre coupled)
- 200µs pulse width, ≤10Hz rep. rate
- Long term stability
 - 300 Mio shots
 - about 10 year storage
- T_{op} = (22 ± 10) °C
- Environmental conditions (- 45°C ... 65°C)
- small size and low weight

PROPRIETARY INFORMATION FBH / © Tesat-Spacecom GmbH & Co.KG reserve all rights including industrial property rights and all rights of disposal such as copying and passing to third parties

808nm – QCW pump sources for Bepi Colombo: chip - design

- design for 70W power / bar (derated power level)
- GaAsP QW
- LOC -structure
- small chip size
 - facet load 20mW/µm
 - 4.5 mm emitting aperture (half of standard bar!)
 - 1.5 mm resonator length
 - 35 emitter, filling factor 70%
- conversion efficiency of chip $\approx 60\%$
- wavelength (807 ± 2)nm

808nm – QCW pump sources for Bepi Colombo: mounting issues

- no dense vertical stacks
- Single devices on 10x10mm² footprint

- Expansion matched materials
- AuSn soldering (chip, n-contact plate)
- Wire bonding
- Approved FAC fixing

2nd ESA-NASA Working Meeting ESTEC 21-22- of June 2006

808nm – QCW pump sources for Bepi Colombo : L-U-I curves

- I_{th} ≈ 15 A
- I_{op} ≈ 70 A @ 70W
- Slope $\eta_d \ge 1.25W/A$
- conversion efficiency $\eta_c \approx 50\%$ @ 70 W
- Series resistance
 R_s ≈ 9 mΩ
- COD level P_{max} > 250W !
 (> 80mW/µm)

808nm – QCW pump sources for Bepi Colombo : spectral

- spectral peak 806nm
- spectral width (95% power)
 < 4nm
- additional modulation by FAC
- wavelength shift determined by temperature

808nm – QCW pump sources for Bepi Colombo : beam profile

- Fast axis with collimation
- slow axis

 θ_{1} < 5mrad (>95% power)

θ_{||} < 120mrad (>95% power)

PROPRIETARY INFORMATION FBH / © Tesat-Spacecom GmbH & Co.KG reserve all rights including industrial property rights and all rights of disposal such as copying and passing to third parties

Preliminary life test for bars Bepi Colombo

Purpose

- demonstration of feasibility
- determination of screening parameters

Conditions

- 10 devices (348 emitters)
 (selected by L-I curve + 300h burn in at 100A / 10Hz)
- constant current $I_{op} = 142A$ (P > 150 W)
- 20 Hz
- 1300 h ≈ 93.6 Mshots

Results of life test

Parameter	1	2	3	4	5	6	7	8	9	10
I _{th} /A	13.6 13.7	14.7 14.8	13.9 15.1	13.0 13.2	14.6 15.1	14.0 14.6	13.6 15.6	13.2 13.8	14.0 13.7	13.9 14.2
I _{op} (100W) /A	92 92	94 100	92 92	92 104	93 92	94 100	94 100	92 105	92 96	92 94
Δλ /nm	0	0.5	0.1	-1.3	0	0.2	0.2	0.7	1.1	0.1
Emitter failure	0	1*	0	7	0	2	1*	6	0	0

- no bar failed (EOL current limit I_{op} < 110A @100W)</p>
- Long term stable spectral behaviour $\Delta\lambda$ < 1nm
- Reliability > 0.999 per bar for $P_{op} = 70W$, 3.15x10⁸ shots (10Hz, 1 year)
 - calculation based on random single emitter failures,
 - acceleration by power (P/Pop)^{2.3}
 (2.3 standard value of 808nm devices)

 \Rightarrow

808nm - QCW – pump sources for higher average power (ATLAS)

- Requirements
 - 808nm
 - space qualification issues similar to Bepi Colombo
 - output power \geq 100W per bar
 - repetition rate \approx 100Hz
 - reliability 10 Gshot
- improved chip design for slightly higher peak power
- Improved mounting scheme designed for 10x-higher average power

808nm - QCW – pump sources for higher average power (ATLAS) first results I

- 100W power / bar
- GaAsP QW
- improved layer structure
- chip size
 - facet load 30mW/µm
 - 4.5 mm emitting aperture
 - 1.5 mm resonator length
 - 35 emitter, filling factor 70%
- conversion efficiency of chip $\approx 65\%$
- wavelength (807 ± 2)nm

2nd ESA-NASA Working Meeting ESTEC 21-22- of June 2006

808nm - QCW – pump sources for higher average power (ATLAS) first results II

- spectral peak at 804.5nm
- enabling λ tuning
 by CW bias current
- spectral width < 4nm (95% power)

- Barren 09a24 aus D0660-4 1,0 $t=25^{\circ}C$ 0,8 $\lambda@ 120W=804.5nm;$ $\lambda@ 150W=806.4nm;$ $\lambda@ 150W=806.4nm;$ 0,4 0,2 0,4 0,2 0,4 0,2 0,4 0,2 0,4
- wavelength shift determined by temperature

PROPRIETARY INFORMATION FBH / © Tesat-Spacecom GmbH & Co.KG reserve all rights including industrial property rights and all rights of disposal such as copying and passing to third parties

Summary – 808nm QCW pump lasers

- electro optical performance
 - I_{op} < 100A @ 100W (\approx 70A @ 70W)
 - $P_{cod} > 3x P_{op}(70W)$
 - $\lambda \approx$ (805...806)nm, $\Delta \lambda$ (95%) \leq 5nm @ P_{op}
 - far field Θ_{\perp} < 5mrad, $\Theta_{\parallel} \approx$ 120mrad @ 95%
 - U_{op} ≈ 2.4 V at 100A
- mounting scheme
 - proved design for 10Hz
 - thermal cycling between 45°C and 65°C
- reliability > 0.999 (70W, 1 year, 10Hz) expected

outlook

- To do short range
 - screening procedure
 - verification of reliability
 - extended life time tests (acceleration!?)
 - reducing series resistance

Improvement opportunities chip - longer range

- optimised design (pumping scheme)
- wavelength stabilisation
 by internal gratings (DFB /DBR)

2nd ESA-NASA Working Meeting ESTEC 21-22- of June 2006