NORTHROP GRUMMAN

THE AEROSPACE

ORCE RESEARCH

"The 2nd ESA-NASA Working Meeting on Optoelectronics: Qualification of Technologies and Lessons Learned from Satellite LIDAR and Altimeter Missions" 21-23 June 2006 Noordwijk, The Netherlands

Fiber Laser Component Testing for Space Qualification Protocol Development

Suzzanne Falvey, Marisol Buelow, Dr. Burke Nelson, Yuji Starcher Northrop Grumman

> Lee Thienel, Dr. Charley Rhodes Jackson and Tull

Dr. Steven Beck, Dr. Heinrich Muller Dr. Todd Rose Aerospace Corporation,

Major Thomas Drape, Lieutenant Caleb Westfall Air Force Research Laboratory

Background Remarks

- This work is the result of a task to establish a test protocol for application in markets where it is desired to take Commercial-off the-Shelf (COTS) photonics and apply them to space
- The testing results presented here was not the primary objective of the effort
 - Primary objective was to test the protocol and its procedures for space qualification of COTS fiber laser components
 - COTS test articles were selected for their nominal applicability to a notional system and not for their suitability for use in space
- The vendors were NOT informed that the parts would be screened for applicability to space
 - Site visits or materials analysis was not done prior to purchasing the test articles, but is desired for an actual space qualification program
- Data results presented here do not reflect on the vendors or their abilities to produce products for space applications

Generic Fiber Lasers – System Architecture*

* *Qualification of Fiber Lasers and Fiber Optic Components for Space Applications*, S. Hendow, S. Falvey, B. Nelson, L. Thienel, Maj. T. Drape, SPIE LASE 2006, 6102-59.

Taxonomy of Test Protocol*

* *Qualification of Fiber Lasers and Fiber Optic Components for Space Applications*, S. Hendow, S. Falvey, B. Nelson, L. Thienel, Maj. T. Drape, SPIE LASE 2006, 6102-59.

Space Flight Qualification Process of a Fiber System*

Integration' of NASA and Telcordia Qualifications

* *Qualification of Fiber Lasers and Fiber Optic Components for Space Applications*, S. Hendow, S. Falvey, B. Nelson, L. Thienel, Maj. T. Drape, SPIE LASE 2006, 6102-59.

Components Selected for Qualifying the Process

Component or Part	Description
Double-Clad Ytterbium- doped Fibers	 Wide-mode area Photonic crystal Various doping concentration Various manufacturers
Combiners	 6+1:1 16:1
Fiber Bragg Gratings	ASE FilterCustom
solators	Fiber pigtailed unitHigh power bulk unit
Pump Laser Diodes	 915 and 976 nm Pigtailed, multimode, no TEC, and high power
_aser Diode Seed Sources	 Distributed Bragg reflector, with TEC, pigtailed
Pump-Combiner Modules	 Integrated module using OFS combiner, has 6 laser diodes, 7:1 combiner, with TEC

Selection is based on relevance to high-power fiber lasers in space application at 106x nm.

Tests Performed are a Function of the Dominant Component Failure Modes

ltem	Parameter to Monitor	Type of Measurement	Dominant Failure Modes		
Fibers	Insertion loss of core Absorption rate of clad at pump λ Absorption and emission spectra	Active Before and after Occasional	 Increase in IL leading to optical damage during operation at peak power (catastrophic) 		
Combiners	Insertion loss, thru fiber Insertion loss, 3 multimode ends	Active Before and after	 Decrease in transfer efficiency from the pump arm to output cladding and overheating of combiner. 		
Pump Laser Diodes	Output Power Wavelength & spectrum Threshold	Active Active Before and after	 Gradual degradation or sudden failure with radiation exposure. High environmental temp may lead to wavelength drift 		
Pump- Combiner Modules	Output power at max current λ and spectrum at max current TEC current at 20°C Power vs. current Isolation	Active Active Before and after Before and after Before and after	 Gradual degradation with radiation. Overheating at high environmental temp may lead to wavelength drift. Combiner may have thermal drift. 		
Fiber Bragg Gratings	Reflectivity Reflectivity spectrum Sideband reflectivity	Occasional Occasional Before and after	 Athermal property may get damaged leading to wavelength drift (catastrophic). IL degradation with radiation damage. 		
Laser Seed Source	Output power at max current Output spectra Output power vs. current TEC current at 20°C	Active Occasional Before and after test Before and after	 Wavelength drift. Gradual or sudden failure due to high thermal operation or radiation exposure. 		
lsolators, Fiber Pigtailed	Insertion Loss Isolation	Active Before and after test	 Increase in IL with vibration, thermal or radiation exposure. 		
Isolators, Free Space	Insertion Loss Isolation	Before and after test Before and after test	 Increase in IL with radiation. Degradation of isolation. Misalignment with vibration. 		

Optical Properties were Measured for Performance Metrics

Component	Test Performance Metrics	Test Type		
Ytterbium Fibers	Insertion Loss	Passive, before and after		
Combiners	Insertion Loss	Passive, before and after		
Eibor Braga Gratings	Insertion Loss, Isolation	Passive, before and after		
Fiber bragg Gratings	Spectrum	Active thermal testing		
Isolators	Insertion Loss, Isolation	Passive, before and after		
	Light-Current Curve	Passive, before and after		
Laser Diode Pumps	Light-Current Curve, Spectrum	Active thermal testing		
Pump-Combiner	Light-Current Curve, Isolation	Passive, before and after		
Modules	Light-Current Curve, Spectrum*	Active thermal testing		
Lasor Sood Sources	Light-Current Curve	Passive, before and after		
Laser Seeu Sources	Spectrum	Active thermal testing		

* Not tested due to complexity of splice to connect with OSA

Component Testing Grouping and Sequencing							
Test Batch	Vibration	Thermal [†]	Radiation [†]				
1	Isolator ACombiner B	 Fiber A Fiber B Combiner A Combiner B 	Fiber ACombiner A				
2	 Fiber Bragg Grating A Combiner A Isolator A Fiber E (non-active) 		Fiber BIsolator A				
3	Laser Diode A (Pump)Fiber Bragg Grating B	 Fiber Bragg Grating A Fiber Bragg Grating B 	•FBG B				
4	Laser Diode C (PCM)	Fiber CFiber D	 FBG A Combiner B 				
5	Laser Diode B (Seed)	 Laser Diode A (Pump) Laser Diode B (Seed) Laser Diode C (PCM) 	Fiber CFiber D				
6	Isolator B	Isolator B (non-active)					

† Active measurements were conducted, unless otherwise noted

Environmental Test Facilities - Vibration

- Aerospace Engineering Facility on Kirtland AFB, NM
- Mounting fixture machined and tested to our subsystem testing levels

Vibration Testing Parameters

- Only component level testing was performed
- Test range 20 to 2000 Hz
- Test in X, Y, and Z
- Order of sweeps for any one axis is SINE-RANDOM-SINE
 - Sine sweeps are ¼G preand post-random runs
- Sine sweep parameters
 - 1:3 octaves per minute
 - BB RMS 318 mcyc
- Random sweep parameters
 - 4 minutes
 - RMS 14 G

NORTHROP GRUMMAN

Frequency (Hz)	Component Testing	Part Testing	Units				
20	0.026	0.052	G²/Hz				
20-50	+6	+6	dB/octave				
50-800	0.16	0.32	G²/Hz				
800-2000	-6	-6	dB/octave				
2000	0.026	0.052	G²/Hz				
Overall	14.1	20.0	G _{rms}				

*3 minutes per axis, tested in x,y, and z.

ACKSON AND TULL

11

Vibration Profile Levels*

Typical Vibration Testing

Batch 1 (Isolator A & Combiner B) vibration layouts:

Environmental Test Facilities - Thermal

Aerospace Engineering Facility on Kirtland AFB, NM

Thermal Testing Conditions

- Most components were continuously monitored and data recorded during tests
 - Exception is Fibers E and Isolators B
- Temperature range
 - -40 °C to +70 °C for Batches 1 through 4, and 6
 - -10 °C to +60 °C for Batch 5 (Laser Diodes)
- Ramp rate was 2°C per minute
- Dwell (plateau) time is based on mass of component to allow article to reach thermal equilibrium
- Test duration was approximately 11 days
 - Approximately 8 days for Batch 5
- Interrupted (paused) thermal cycles to insert more components
 - Batches 1, 2 & 4
 - Enabled schedule compression (make up time)

Thermal Testing Parameters

Batch 6 (Isolator B) underwent 50 cycles from -40 to +70°C with 100 min plateaus.

Vibration and Thermal Testing Results Overview

	Description	Item	Degra	adation	(D) or			ltem	Degradation (D) or		
Component		-#	Failure (F) Observed		Component	Description	#	Failure (F) Observed		served	
		#	Vibration	Thermal	Handling			#	Vibration	Thermal	Handling
		1					6+1:1	1			
Fiber A 5/125/250m	PM SMF 5/125/250um	2	N/A Comi	Combiner A	Combiner A SMF core fiber	2	D	F			
	5/125/200 µ 211	3			D		MMF port fibers	3			
	DCF mu DCF	1					16 : 1	1	D	D	
Fiber B	with FC/PC	2	N/A	F		Combiner B	MMF input fibers	2			
	connectors	3					DCF output fibers	3			
	mىر 30/250/400	1					Custom, ASE	1			D
Fiber C large	large mode	arge mode 2	N/A F	FBG A	Filter, 1064 nm,	2					
	area fiber	3					Athermal Package	3			
	mس45/49/250	1 2						1			
Fiber D	fiber under		N/A		FBG B	ASE FIITER, 1062 nm. Demonstrator	2				
	development	3					, 2 00.0.0.0.0.0	3			
	40/170/650µm	1					Pump, Pigtailed,	1			
Fiber E	high NA fiber, with onde	2	N/A	N/A		Laser Diode A	multimode, no TEC, high power	2			
	sealed	3				T		3			D
	1064nm, PM, single stage, pigtailed13	1					Seed Source, DBR with TEC, pigtailed, low power	1			
Isolator A si		2				Laser Diode B		2			
		3						3		D	
	Dulli unit	1	N/A	D		Laser Diode C	PCM, integrated	1		D	
ISOIATOR B	Bulk unit	2	F	N/A			aser Diode C using 7:1	2	D	D	
L I							LDs, with TEC	3		D	

Vibration and Thermal Testing Summary

- Vibration Component Failures or Degradations:
 - Combiner A #2 saw 2.2 dB degradation
 - Combiner B #1 saw 1.4 dB degradation
 - Laser Diode C (PCM) #2 saw 8% degradation in max output power
 - Isolator B physically shook apart
- Thermal Component Failures or Degradations:
 - Fiber B #2 had immediate damage when fiber snapped at start of cycle, possibly due to air flow in chamber
 - Combiner A #2 failed after one cycle
 - Combiner B #1 degraded by 1.5 dB after 80 cycles
 - Laser Diode B (seed) #3 showed ~25% degradation
 - Laser Diodes C (PCM) showed ~10% degradation
 - Isolator B (Bulk) isolation degraded by ~20%
- Handling Degradations:
 - Fiber A #3 was degraded by 0.6 dB when inserted into its vinyl bag
 - FBG A #3 fiber pigtails broke easily, but recovered when re-spliced
 - LD A (pump) #3 slope efficiency decreased by ~10% when unsoldered from thermal setup

Environmental Test Facilities - Radiation

- Aerospace Corporation, El Segundo, CA
- Cobalt-60 source
- Chamber dimensions ~10.5" x 10.5" x 42"

Radiation Testing Overview

- Gamma-ray testing of components for current effort
 - Devices include
 - Ytterbium fibers
 - Isolators
 - Fiber-Bragg gratings
 - Combiners
 - Laser diode seed and pump are susceptible to displacement damage, radiation testing not planned
 - Total dose planned
 - 100 kRad ("high" rate) for most components
 - 10 kRad ("low" rate) for Ytterbium fibers

Component	Dose (kRad)
Fibers A	10 & 100
Fibers B	10 & 100
Fibers C	10 & 100
Fibers D	10 & 100
FBGs A	100
FBGs B	100
Isolators A	100
Combiners A	100
Combiners B	100

Radiation Testing Setup

Radiation Testing Results Overview

Component	ltem	Degradation (D) or Failure (F) Observed	Component	Item	Degradation (D) or Failure (F) Observed
	Number	Radiation	·	Number	Radiation
	1	100kRad, dark (D)		1	100kRad
Fiber A	2	100kRad, pumped (D)	Combiner A	2	100kRad
	3	10kRad, dark (D)		3	
	1	100kRad, dark (D)		1	100kRad
Fiber B	2	100kRad, pumped (D)	Combiner B	2	100kRad
	3	10kRad, dark (D)		3	100kRad
	1	100kRad dark (D)	Eiber Bragg	1	100kRad
Fiber C	2		Grating A	2	100kRad
	2	10kRad, pumped (D)	Grating A	3	100kRad
	3	100kRad, dark (D)	Eiber Bragg	1	100kRad
	1		Croting D	2	100kRad
	2	100kRad, pumped (D)	Grating B	3	100kRad
	3	10kRad, dark (D)		1	
	1		Laser Diode A	2	These units were not subjected
Fiber E	2			3	to Gamma Radiation testing as
	3			1	their failure modes would not be
	1	100kRad	Laser Diode B	2	seen. The decision was made
Isolator A	2	100kRad		3	early on that for the purposes of
	3	100kRad		1	particle radiation testing was
le eleter D	1	Units arrived late and were not	Laser Diode C	2	prohibitive.
ISOIATOR B	2	subjected to radiation testing		3	
	No degrad Limited de Unaccepta	dation or failure observed egradation or failure observed able degradation or failure observed	L		1

21

Radiation Testing Summary

- Passive components like the isolators, FBGs, and combiners show only insignificant radiation sensitivity
 - < 0.1 dB change over 100 kRad</p>
- Active fiber will fail within 100 kRad if not pumped
- Laser diode seed and pump are susceptible to displacement damage, so no gamma radiation testing performed on these components

Lessons Learned

- The lessons learned can be categorized:
 - Fiber Handling
 - Test Equipment
 - Component Testing
 - Data Acquisition
 - Safety Issues

☆ The lessons learned will aid in future assessments and definition of space qualification protocols, and provide recommendations for areas of improvement

Test Protocol was Updated as a Result of This Effort

- Performed testing to improve the fidelity of the draft test protocol
 - Documents appropriate tests that are performed at the part, component, and subsystem level to increase probability of success on orbit
- The Lessons Learned are being incorporated into the protocol
- Revising the protocol to have more of a bottoms up view, including a utilitarian approach
 - Attach the actual test procedures that we ran
- Improvements to the protocol document also include discussions on
 - COTS Vendor interaction and involvement
 - Engineering issues
 - Survivability and reliability
 - Materials analysis at process start
 - Expanded fiber splicing section
 - Handling and issues

Component Testing Summary/Conclusions

- Primary objective of this effort was to test the protocol and its procedures for space qualification of COTS fiber laser components
- Data results presented here do not reflect on the vendors or their abilities to produce products for space applications
- Subjective judgment for space qualification of components is summarized here:

Component	Space Qualification						
Component	DPA	Vibration	Thermal	Radiation			
Fiber A							
Fiber B							
Fiber C							
Fiber D							
Fiber E							
Isolator A							
Isolator B							
Combiner A							
Combiner B							
FBG A							
FBG B							
Laser Diode A							
Laser Diode B							
Laser Diode C							

Acknowledgements

This project was sponsored by the USAF, AF Materiel Command, AFRL, 3550 Aberdeen SE, KAFB, NM 87117, with Jackson and Tull as the Prime Contractor, under contract number F29601-01-D-0078.

- Northrop Grumman
 - Pat Cavenee, Matthew Larsen, Will Graveman
- Jackson and Tull
 - Joseph Kelley
- NASA
 - Melanie Ott
- Spectra-Physics
 - Dr. Sami Hendow
- United States Air Force
 - Colonel Norman Anderson

Detailed final report will be submitted to DTIC 30 June 2006 For further information, email request to suzzanne.falvey@ngc.com

