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ALADIN Overview
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Functional architecture
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● The laser beam is transmitted 
and received through the 
telescope (1.5 m)

● Two laser heads are embarked 
(redundancy)

● Two spectrometers and 
associated CCD detectors are 
within the instrument (Mie & 
Rayleigh receiver)

● Thermal control and 
synchronisation is performed 
by the instrument (hardwired 
logic)
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Key issues at instrument level

● Contamination risk on laser optics
- Bake-out of all glued components within the Power Laser Head and 

Transmit/Receive Optics
- Bake-out of all materials (structures,  MLI,..) located close to the PLH and TRO
- Purging of PLH from box closing until launch

● « Laser straylight » within the instrument
- No damage/saturation on detector during firing -> Chopper mechanism and

anti-backreflection surface on M2 mirror
- No laser « hot spots » within the instrument on optics or structure -> Specific 

protections (field stops, baffles) to avoid high energy illumination outside laser 
optics and low energy source for laser alignment

● Thermal control
- High laser power dissipation -> Numerous Heat pipes on instrument and 

platform: orientation versus gravity vector to be managed thoughout all 
integration and test programme  
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Transmitter Laser Assembly (TxA)

● The TxA is composed of:
● Power Laser Head (PLH)

- Diode-pumped Nd-YAG laser
- Emits 150 mJ pulses @355 nm
- Pulse repetition frequency 100 Hz
- 12 s “bursts” every 28 s

● Reference Laser Head (RLH)
- Highly stable seeder laser (a few MHz)
- Tunable over 7 GHz

● PLH and RLH conductively cooled
● Transmitter Laser Electronics (TLE)

- High current and voltage driver
- Transmitter control and synchronisation
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Transmitter Laser – PLH

The Power Laser Head 
(PLH) includes:

● Injection seeded
Master Oscillator
Section (MO)

● Amplifier Section with
two slab amplifiers

● Harmonic Generation
Section with doubling
and tripling crystals

Transmitter issues: see specific presentation from A. Cosentino
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Receiver

● The Receiver is composed of two channels (Mie and Rayleigh) each 
composed by an etalon spectrometer and a CCD Front-End Unit.

● It also includes a polarisation diplexer to separate Transmit/Receive paths 
and a Chopper Mechanism to shut the receiver during laser firing

● The optical architecture allows to feed Mie and Rayleigh channels with 
maximum optical efficiency

● The spectral registration between the Mie and Rayleigh channels is 
performed with thermal tuning of the Rayleigh spectrometer :

- Thermal hood around the RSP
- Tuning on a range of +/- 3 K
- 1 mK accuracy

● Detection modules are based on “Accumulation CCD” (Astrium patent) 
allowing quasi photon-counting performance with a Si-CDD

- Read-out noise < 4e- (equivalent to 0.5 e- noise per shot)
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Mie Spectrometer

● Fringe imaging technique
- An interferometer provides a fringe whose 

position is proportional with the spectral shift
- The energetic distribution of the fringe is 

sampled (16 channels)
- A specific processing allows sub-sample 

resolution to be achieved (e.g. centroiding)

● Physical implementation
- Fizeau spectrometer : multiple beam 

interferometer with a wedge which 
generates the fringe as output

- Coupling optics
- Detector: Accumulation CCD: quasi-photon 

counting with 80% quantum efficiency using 
on-chip shots accumulation
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Mie Spectrometer

Fizeau etalon Mie Spectrometer during integration
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Rayleigh Spectrometer

● Double edge technique 
- Two filters are implemented aside the Rayleigh 

spectrum. 
- The flux through each filter varies with the 

spectral shift
- The detected flux is processed with an 

ecartometric-like function : (A-B)/(A+B)

● Physical implementation
- Sequential Fabry-Perot cavity (Astrium patent)
- Single detector in order to eliminate the errors 

due to the gain of the detection chains.
- The detector is the same as for the Mie channel.
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Rayleigh spectrometer
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Detection Front-end Unit



Page 13

Transmit/Receive Optics

Left : Titanium bench

Right : Diplexer

Centre : TRO during integration
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Receiver Engineering Model
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Key Issues on Receiver

● High energy laser optics on Transmit/Receive Optics
- Same issues as for the Transmitter (Laser Induced Damage & Contamination)

● Very high stability of Spectrometers
- Etalons assembled by optical contact and sealed under vacuum -> nm stability
- Instrument calibration of spectral response -> allows to remove long term effects

● Very low noise detection
- High optical isolation between transmit and receive path
- Specific CCD architecture developed for lidar applications
- Proton radiation effect on CCD noise verified to be acceptable

● Complex alignment and integration
- High alignment accuracy (several 10 µrad per component)
- Requires UV source
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Telescope Design

 

 

 

 

Sic secondary 
mirror 

SiC legs with 
tubular section
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and M2 

Titanium brackets 
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mounts 

Upper Strut Thermal 
Protection 

● Ultra-lightweight 
Telescope all in silicon 
carbide (SiC)

● Low mass / high 
stiffness

● Diameter: 1.5 m
● Afocal optics
● Mass: 75 Kg
● First frequency > 60 Hz
● Thermal re-focusing 

capability
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Telescope

Tripod during vibration test
M1 flight mirror
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Key Issues on Telescope

● High stiffness / high mechanical load
- Mechanical tests allowed to demonstrate compatibility to above 50 g level

● High reflectivity
- Custom enhanced metallic coating at 355 nm developed for the mirrors

● Good required optical quality
- Long polishing time (~1 year)
- Requires mechanical decoupling from instrument / platform structure
- Control of wavefront error at various steps of integration

● Thermal control
- Use of a single material (SiC) with high conductivity to limit gradient
- Thermal refocusing (avoids use of mechanism): 1 µm accuracy
- Sun illumination: specific protections close to M1 focus
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Conclusions

● ALADIN is the first space Lidar ever built in Europe
● Specific design solutions and integration methods have 

been developed with regards to laser aspects
● Qualification issues (e.g. optical materials, laser 

components) are discovered during the development
phase and difficult decisions have to be taken

● Future R&D programs at Agency level should include
qualification activities in order to secure future lidar 
programs
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