

ESA-NASA Working Meeting on LIDAR ALADIN Instrument: Key Issues & Technical Challenges

D. Morançais ALADIN Project Manager

PCDU

Key issues at instrument level

Contamination risk on laser optics

- Bake-out of all glued components within the Power Laser Head and Transmit/Receive Optics
- Bake-out of all materials (structures, MLI,..) located close to the PLH and TRO
- Purging of PLH from box closing until launch

• « Laser straylight » within the instrument

- No damage/saturation on detector during firing -> Chopper mechanism and anti-backreflection surface on M2 mirror
- No laser « hot spots » within the instrument on optics or structure -> Specific protections (field stops, baffles) to avoid high energy illumination outside laser optics and low energy source for laser alignment

Thermal control

 High laser power dissipation -> Numerous Heat pipes on instrument and platform: orientation versus gravity vector to be managed thoughout all integration and test programme

Transmitter Laser Assembly (TxA)

- The TxA is composed of:
- Power Laser Head (PLH)
 - Diode-pumped Nd-YAG laser
 - Emits 150 mJ pulses @355 nm
 - Pulse repetition frequency 100 Hz
 - 12 s "bursts" every 28 s
- Reference Laser Head (RLH)
 - Highly stable seeder laser (a few MHz)
 - Tunable over 7 GHz
- PLH and RLH conductively cooled
- Transmitter Laser Electronics (TLE)
 - High current and voltage driver
 - Transmitter control and synchronisation

Transmitter Laser – PLH

The Power Laser Head (PLH) includes:

- Injection seeded Master Oscillator Section (MO)
- Amplifier Section with two slab amplifiers
- Harmonic Generation Section with doubling and tripling crystals

Transmitter issues: see specific presentation from A. Cosentino

- The Receiver is composed of two channels (Mie and Rayleigh) each composed by an etalon spectrometer and a CCD Front-End Unit.
- It also includes a polarisation diplexer to separate Transmit/Receive paths and a Chopper Mechanism to shut the receiver during laser firing
- The optical architecture allows to feed Mie and Rayleigh channels with maximum optical efficiency
- The spectral registration between the Mie and Rayleigh channels is performed with thermal tuning of the Rayleigh spectrometer :
 - Thermal hood around the RSP
 - Tuning on a range of +/- 3 K
 - 1 mK accuracy
- Detection modules are based on "Accumulation CCD" (Astrium patent) allowing quasi photon-counting performance with a Si-CDD
 - Read-out noise < 4e- (equivalent to 0.5 e- noise per shot)

Mie Spectrometer

• Fringe imaging technique

- An interferometer provides a fringe whose position is proportional with the spectral shift
- The energetic distribution of the fringe is sampled (16 channels)
- A specific processing allows sub-sample resolution to be achieved (e.g. centroiding)

• Physical implementation

- Fizeau spectrometer : multiple beam interferometer with a wedge which generates the fringe as output
- Coupling optics
- Detector: Accumulation CCD: quasi-photon counting with 80% quantum efficiency using on-chip shots accumulation

Mie Spectrometer

Fizeau etalon

Mie Spectrometer during integration

Rayleigh Spectrometer

Double edge technique

- Two filters are implemented aside the Rayleigh spectrum.
- The flux through each filter varies with the spectral shift
- The detected flux is processed with an ecartometric-like function : (A-B)/(A+B)

Physical implementation

- Sequential Fabry-Perot cavity (Astrium patent)
- Single detector in order to eliminate the errors due to the gain of the detection chains.
- The detector is the same as for the Mie channel.

r

Full pupil sequential filter

ladin

Rayleigh spectrometer

Detection Front-end Unit

Transmit/Receive Optics

Right : Diplexer Centre : TRO during integration

Receiver Engineering Model

• High energy laser optics on Transmit/Receive Optics

- Same issues as for the Transmitter (Laser Induced Damage & Contamination)

• Very high stability of Spectrometers

- Etalons assembled by optical contact and sealed under vacuum -> nm stability
- Instrument calibration of spectral response -> allows to remove long term effects

• Very low noise detection

- High optical isolation between transmit and receive path
- Specific CCD architecture developed for lidar applications
- Proton radiation effect on CCD noise verified to be acceptable

• Complex alignment and integration

- High alignment accuracy (several 10 µrad per component)
- Requires UV source

Telescope Design

- <u>Ultra-lightweight</u>
 <u>Telescope all in silicon</u>
 <u>carbide (SiC)</u>
- Low mass / high stiffness
- Diameter: 1.5 m
- Afocal optics
- Mass: 75 Kg
- First frequency > 60 Hz
- Thermal re-focusing capability

Telescope

M1 flight mirror

Tripod during vibration test

Key Issues on Telescope

• High stiffness / high mechanical load

- Mechanical tests allowed to demonstrate compatibility to above 50 g level

• High reflectivity

- Custom enhanced metallic coating at 355 nm developed for the mirrors

Good required optical quality

- Long polishing time (~1 year)
- Requires mechanical decoupling from instrument / platform structure
- Control of wavefront error at various steps of integration

Thermal control

- Use of a single material (SiC) with high conductivity to limit gradient
- Thermal refocusing (avoids use of mechanism): 1 µm accuracy
- Sun illumination: specific protections close to M1 focus

Conclusions

- ALADIN is the first space Lidar ever built in Europe
- Specific design solutions and integration methods have been developed with regards to laser aspects
- Qualification issues (e.g. optical materials, laser components) are discovered during the development phase and difficult decisions have to be taken
- Future R&D programs at Agency level should include qualification activities in order to secure future lidar programs

