

LIDAR in HAYABUSA Mission

Takahide Mizuno Institute of Space and Astronautical Science JAXA

Katsuhiko Tsuno, Eisuke Okumura NEC Toshiba Space Systems Ltd.

NEC/TOSHIBA TOSHIBA

Michio Nakayama Toshiba Corporation

Agenda

- Outline of HAYABUSA Mission
- How to use LIDAR?
- LIDAR System & components
- Lessons Learned
- Ranging Data at Touchdown
- Conclusion

HAYABUSA Objectives

HAYABUSA is Spacecraft to demonstrate following technology and to observe small asteroid Itokawa.

- Operation of Ion Engines for more than
- Earth Gravity Assist with Ion Engines
- Rendezvous with Itokawa with Autonomous Navigation
- Scientific Observation of Itokawa
- Touch-down and Sample Collection
- Return and Recovery of Capsule

HAYABUSA Today

Rendezvous and Landing Sequence

Bottom Panel View of HAYABUSA

HAYABUSA LIDAR

Items	Specification
Range	50m~50km
Accuracy	$\pm 1m(@50m)$
Repetition Rate	1Hz
Laser	Q-SW, Nd:Cr:YAG
Wave length	1064 nm
Output Power	8 mJ
Pulse Width	14 nsec
TX Beam Width	ϕ 1.7 mrad (1/e ²)
RX FOV	φ1 mrad
RX Optics	Casegren \$\$\phi\$ 126 mm, SiC
Weight	3.7kg
	Include: DC/DC, Radiator
Power	17.0W (+LD Heater max5W)
Size	$240 \text{mm} \times 228 \text{mm} \times 250 \text{mm}$
	Radiator: 240mm×300mm

Block Diagram of LIDAR

RX Casegren Telescope

Surface Irregularity 0.18 µ mP-V

YAG Laser Resonator

- Single Mode Q-Switched Diode Pumped Nd:YAG
- LD is thermally controlled between 30 and 35 degrees by thermostat to tune LD wave length to the absorption line.
- -Some protective windows are installed to avoid radiation damage due to contaminations.
- Pockels Cell is driven by 2.7kV high voltage driver.
- Output Laser is expanded by expander with magnification of 3.

Lessons Learned

- Deterioration of LD
- Damaged by contamination
- LiNbO3
- Thermal Vacuum test

Stability of On Board Counter

Signal Level Dependency - Range Error of LIDAR 2 -

Field Experiment with PM at Uchinoura Oct. 2001

LIDAR First Light

Date and Time(UST)

Ranging Result at First Landing

19 Nov. 2005

LIDAR Operation History

Calibration with shadow of HAYABUSA

LIDAR Range (m)	Calculation from shadow (m)
188.5	188.6
39.9	43.3
38.5	42.9

Good agreement!

No Range Bias.

Measurement of ITOKAWA Surface

- -Tukuba boulder with 3-4m height was identified
- -A possible rock fissure was also identified
- Rough Terrain: Surface roughness near Tsukuba Boulder: 2.2m
- Smooth Terrain: Surface roughness in the Muses Sea: 0.6m

400 Horizontal distance along path (m)

Relative

600

Conclusion

- -Three month LIDAR operation is successfully performed with 4.1 million laser shot.
- No Laser power degradation was observed.
- -HAYABUSA had successfully rendezvoused with ITOKAWA by LIDAR data.
- -HAYABUSA had successfully touchdown based on its navigation sensor including LIDAR.
- -LIDAR detected the range from 50km to 30m.
- -LIDAR data will provide important surface information of ITOKAWA