Property variations of Laser components under vacuum conditions

M. Jupé, T. Groß, H. Mädebach, K. Starke, D. Ristau, Laser Zentrum Hannover e.V., Hannover, Germany
Thin Film Technology Department

Characterization
Development of test procedures, service for analysis devices

Coatings
Production of optical coatings following customer specifications

Process development
Optimization of coating processes, online-process monitoring
Process Development

Thermal Processes
E-beam and boat evaporation
Consulting and Implementation for industrial production
Coatings for deep-UV and vacuum-UV applications

Ion Assisted Deposition (IAD)
Characterization and optimization of ion sources
Process monitoring and controlling
Rapid manufacturing, MIR-spectral range

Ion Beam Sputtering (IBS)
Low optical losses, dense layer system
High power edge filters, Rugate filters
Precision IBS coating technology
Coatings

Production of custom-requested coatings

Spectral range 130nm to 5µm
Small batch sizes, special requirements
- optical performance, low losses
- damage threshold, stability
- complex spectral requirements

Special substrates and materials
- complex geometries
- laser and nonlinear crystals
- fiber and laser diode facets
- special coating materials
Optics Characterization

Damage threshold ISO 11254
157 nm, 193 nm
780 nm (ultra-short pulses), 1064 nm
single and multiple-pulse testing

Absorptance ISO 11551
355nm, 532 nm, 1064 nm, 10.6 µm

Total scattering ISO 13696
157 nm, 193 nm, 633 nm, 1064 nm

Spectrophotometry ISO 15368
120 – 240 nm, 190 – 3200 nm, 2.5 – 25 µm

Precise Reflectometry ISO 13697
532nm, 1064 nm, 10.6 µm

Development of standard characterization procedures (DIN, CEN und ISO)
What changes?

Spectral behavior

- Spectral curves of a HR1064 coated in a conventional electron beam process \([(HL)_{19}H - Ta_2O_5/SiO_2]\). The spectrum significantly shifts to shorter wavelength under vacuum conditions.

Damage threshold
(measurement according ISO11254)

- Damage threshold decreases strongly in vacuum!!!
Changing of the spectral behavior

- Method: spectral photometrical measurement in the coating plant (BBM).

- Method: spectral photometrical measurement of thermal shift in with a special heating set-up.

Comparison of the measurements

Content of water in layer
Where is the water located in the layer?

- Focus on the physical absorption
 (The chemical binding of hydroxide molecules on the silica is also possible.)

Porous microstructure
- Including of water in the structure
- Changing of the refractive index
- Absorption in the infrared
- Obviously, changes of the laser light resistance

Demanded of layers with a higher density of the microstructure

1. IBS
2. IAD
Coating processes

IBS- Coating plant
• Low loss optics (laser gyro mirror)
• Crystal coatings
• High power (Rugate)
• Shift free, water free
• But: High stress

IAD- Coating plant
• Water free optics for the MIR-application
• Shift free
• Optionally stress free
• But: Contamination??? → Test of different Ion sources (APS, Lion, Denton CC105)
Results of shift measurements

Vacuum shift of a HR1064 conventional

- The samples have shown different behaviors during evacuation and venting.
- The vacuum shift of IBS-samples is negligible. For IAD –samples the vacuum shift depends on the Ion dose.
- Time of relaxation is in the range of 1 to 5 hours.
- The relative accuracy of the measurement is $1E^{-3}$.

Vacuum shift of AR-coatings

Hysteresis of the AR-optics

Vacuum shift overview
Thermal Shift Measurement

- Thermal shift reveals the content of water. The results correspond with the spectral measurements in the IR.
- Problem of thermal shift measurement is the annealing of the samples.
Damage of samples under vacuum conditions

AR- coating manufactured in an e⁻-beam process

In air the LIDT is stable at 20 J/cm². In vacuum the LIDT decreases dramatically.

AR- coating manufactured in an IBS process

The damage threshold is relatively low, but environment conditions do not have an influence on the LIDT.
IBS-Coating

The increasing LIDT can be achieved using alternative coating materials. Vacuum test are planned.

IAD:

The damage threshold is in the range of e^{-} beam coatings. Vacuum test are planned.
Summary

- Vacuum and thermal shift measurement have shown spectral shifts.
- Coatings of different processes were tested.
- Coating properties change under vacuum conditions.
Acknowledgements

• The European Space Agency (ESA) supported the work under the contract number: 19176/05/NL/AR. Special Thanks to Denny Wernham and Yngve Lien for the valuable discussions.